Deviation Analysis and DetectionDeviation analysis can reveal surprising facts hidden inside data. CMSR Data Miner provides tools that can be used to detect deviations, anomalies, and outliers. Detection is needed for various reasons;
Deviation Detection in TimeSeries Trend DataRulebased automation can be used to detect deviant trends automatically. RMEEP is a rule engine which supports various timeseries regression and statistical functions. It's a perfect platform for automation of timeseries trend deviation detection. For example, the followings can be implemented easily;
This type of rules can be easily implemented with RMEEP rule engine. It requires KPI data to be stored as a relational database table. In addition, you need to learn SQL style coding. RMEEP is available from CMSR Data Miner/Machine Learning Studio. The following is an coding example. CMSR Download has the full code in the model "KPI Trends Detection Scan" of the "Demo" project. The model implements some above detections. RMEEP can update KPI database table and/or write into a CSV file. More example codes can be found here. /* * If the difference between the current value and the predicted value is bigger than * ratetimes of the regression average absolute errors. */ DECLARE "StateBigJump" AS STRING OUTPUT INITIAL VALUE 'No'; // evaluation status for big jump, if, 'Yes' RULE BigJumpDetection: IF ABS("Current"  TIMESERIES(1, (LINEAR, EXPONENTIAL), 1, "Series")) > TIMESERIES(AVG_ABS_ERROR, (LINEAR, EXPONENTIAL), 1, "Series") * 1.5 THEN SET "StateBigJump" AS 'Yes' END; Cross Tables and Hidden PatternsCMSR Data Miner supports very powerful deviation detection methods for Cross Tables. It shows deviation in terms of over performining and under performing cells. The methods can reveal hidden patterns and hidden information hidden inside cross table numbers. Note that this tool is also available as Excel Addin Cross Tables. Predictive ModelingPredictive Modeling, such as decision tree, rule induction and neural network, can be used to detect deviations. To detect anomalies in categorical fields, all three tools can be used. For numerical fields, however, only neural network can be employed. Note that decision tree and rule induction cannot predict values for numerical fields. With CMSR Data Miner, this works as follows;
Hotspot AnalysisHotspot Analysis can detect outliers. More specifically, this will detect patterns of outliers, defined in terms of profile conditions. Outliers can have extremely high or low averages, probabilities, etc. With CMSR Data Miner, you can perform as follows;
ClusteringClustering objects based on similarity and analyzing clusters may reveal outliers. With CMSR Data Miner, you can perform as follows;

